
Supplemental Material for Mirror-Aware Neural Humans

In addition to the results in the main paper, we provide
more qualitative results and implementation details. The
supplemental video shows the results in motion.

1. Additional qualitative 3D Reconstruction
Results

Figure 1 demonstrates the capability of Mirror-Aware Neu-
ral Humans (Step 2 output) to reconstruct challenging poses
where existing 3D pose estimators are prone to fail. The ly-
ing down pose is representative both for strong self occlu-
sions, which necessitates the second mirror view or other
means of multi-view recording, and for extreme vertical
poses, which goes against the bias towards standing poses
learning-based approaches have.

2. Novel View and Pose Synthesis
Figure 2 shows novel view synthesis results that reveal
an accurate 3D reconstruction of the monocular input im-
ages. Notably, the model-free nature enables reconstructing
unique shapes such as long hair and loose clothing (first two
rows), body accessories such as wristwatch (central row),
and texture details such as logos (last two rows).

Figure 3 simulate one of the learned volumetric body
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Figure 1. Mirror 3D reconstruction. Our mirror approach suc-
cessfully reconstructs challenging virtual poses in the mirror from
the side and top view from scratch, including an extreme case of
lying on the ground.
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Figure 2. Novel view synthesis results. The learned reconstruc-
tion is a proper 3D model that can be rotated to novel views.

Figure 3. Mirror Retargeting. Given a source body (left), Mirror-
Aware Neural Humans successfully simulate the mirror arrange-
ment in an unseen setting (right).

models in an unseen mirror arrangement, requiring both
novel view (mirror) and novel pose from a different actor.



Figure 4. Volumetric body model and 3D skeleton overlay. Besides the ones provided in the main paper, we here show additional
qualitative results on new actors and scenes. The skeleton overlay reveals how precise the fit is, even in unusual poses.

This highlights the effectiveness of our automatic mirror
normal estimation (discussed in the main paper).

3. Effect of Regularization Constraints
Figure 5 Left measures the importance of the smoothness
term on our 3D reconstruction objective and shows its ro-
bustness to different weights. The smoothness term on ori-
entation with a weight of 1.0 minimizes the 3D reconstruc-
tion error (measured in P-MPJPE). Figure 5 Right carries
out the same ablation on the body joint location smoothness
term, with a scale of 0.22, leading to the best results on the
validation sequence.

Figure 5. Ablation study on smoothness terms, all values in P-
MPJPE. Left: Effect of the angular smoothness weight Right:
Effect of the positional smoothness weight.

4. Mirror Matrix Derivation
We provide further details on the mirror matrix derivation.
Following [4, 6], we define a mirror operation A that mir-
rors points across the mirror plane π. This operation in-

cludes a rotation and reflection, and can be described using
the plane equation,

nxx+ nyy + nzz + d = 0 (1)

where d = −m · nm is the distance of the mirror plane
to the camera origin. Generally, m can be any point on
the plane that defines the plane’s location, and in this case,
the mirror location is chosen as the point between the real
and mirrored person. nm is the normal of the mirror that
defines the orientation of the plane. Hence, we can derive
the virtual camera through a mirror matrix A that reflects
point through the plane in Eq. 1 using A = I− 2nmnT

m [2]
where I is a 3× 3 identity matrix. The mirror matrix A can
be expanded as,

A =

1 0 0
0 1 0
0 0 1

− 2 ·
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nz

 ·
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]
or, (2)
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which can be fully expressed as a 4×4 affine transformation
matrix such that,
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with nm = [nx, ny, nz] the mirror normal and d is the dis-
tance between the camera and mirror (both quantities are
from Step 1 in the main document. By defining the real
camera to be at the origin pointing along the z-axis, A maps
points from the real to the virtual camera using the follow-
ing, x̄ȳ

z̄

 = A ·

xy
z

 (5)

Note that the orientation of the virtual camera switches
to a left-hand coordinate system (LH) [5, 6] based on the
reflection component in R̄.

> IOU score No of Overlap Frames Frame Ratio
C6 C7 C6 C7

5% 402 652 0.25% 0.42%
7% 322 569 0.20% 0.36%
10% 229 450 0.14% 0.29%
20% 63 72 0.04% 0.05%

Table 1. Number of candidate frames and ratio in cameras 6
and 7 automatically identified as overlapping cases based on their
bounding box IOU score, thereby selecting the option with the
highest confidence (>20%).

5. Separating Real and Mirror Poses

Since human pose detectors are not completely accurate,
we drop frames where the pose prediction is below half of
the height of a valid pose visually. On the MirrorHuman-
eval dataset, we use the available GT focal length and re-
move detections on bystanders and correct ambiguous real-
to-mirror associations using the distance to the 2D GT an-
notation. Note that this ensures that we work with auto-
matic detections as available in practice, containing slight
inaccuracies, while leaving complete mis-detections or as-
signments out of the equation to aid a fair comparison to
previous methods using manually annotated ground truth
2D annotations. Note that this correction is only applied to
the MirrorHuman-eval dataset and only to very few frames
and cameras; only for camera 2 (2 mismatches out of 1571
frames) and camera 5 (4 mismatches out of 1377 frames).

To analyze the effect of frames with occlusion compared
to frames without, we measure the IOU between the bound-
ing boxes for the virtual and real person. We select the one
with a high confidence above 20% and quantify the amount
of occluded frames in Table 1. Only very few frames show
occlusions but these are important to address.

6. Optimization and Training Details

In Step 1, we solve for the focal length and initial ground
plane by solving a system of equations using Singular Value
Decomposition (SVD) for 20K RANSAC iterations. In Step

2, we jointly optimize for the joint rotations θ, pelvis po-
sition ppelvis, bone lengths ℓ, and joint rotations θ (as ex-
plained in the main document) using the Adam optimizer
[3] with a learning rate of 1× 10−1 and without any weight
decay. For a sequence of 2000 frames, we found our opti-
mization to converge after 2K iterations in 2 hours on av-
erage with 16 Intel Core i7 CPU cores. Since our skeleton
model has only few parameters we run Step 1 and Step 2 on
the CPU.

In Step 3, we use the estimated pose and the bone rota-
tions to learn G(θ). For occlusion handling, we use 20%
threshold for automatic overlap area detection. Similar to
[7], we sample a batch of 3072 rays in each iteration, and
attribute 30% of these rays to occlusion areas if occlusion is
detected. We train the volumetric model for 200K iterations
and jointly refine the 3D pose. As in [7], we finetune the
remaining body details for 145K, keeping pose fixed. As [8]
does not refine pose, we train for a maximum of 300K iter-
ations to learn the body model with the pose fixed. Option-
ally, we refine the 3D pose estimates from Step 2 with [7]
to provide better initialization for [8]. The training is done
on 4 Nvidia-Tesla V100 GPU and takes a 4-6 days. For ex-
ample, for a sequence of 1620 training frames trained with
occlusion handling, Mirror DANBO w/ Occlusion takes 30
hours for 300K iterations and Mirror A-NeRF w/ Occlusion,
including pose refinement and finetuning, takes 130 hours
for up to 400K iterations.

7. Camera Calibration Details
Hyperparameter selection. Hyperparameters, including
the number of RANSAC steps and the angle threshold for
up-right poses used in the camera calibration are determined
on camera 2 and 3 of the MirrorHuman-eval set (our vali-
dation set).

Derivation. Our single view calibration is based on [1].
For completeness, we provide an overview of the relevant
steps below. The single view calibration method is based
on the well-established direct linear transform (DLT) [9]
method to solve projective relations. We first write our con-
straints as a linear system of equations that is solved using
Singular Value Decomposition (SVD), up to the unknown
scale factor arising from the projection. To reach the form
Mx = 0, we take the cross product on both sides of Eq. 1
and Eq. 2 from the main paper and subtract the two results
to derive

qneck ×K(pankle + n · h)− qankle ×K(pankle) = 0, (6)

with h the person height, n the normal direction, and qneck
and qankle the neck and ankle positions. In the following
we subscript variables with an x, y, z to indicate the x,y,z-
coordinates and with a number 1, 2, 3 to refer to different
person locations.



In matrix form, using ∆qx = qneck
x − qankle

x , ∆qy =
qneck
y − qankle

y , and z to represent the unknown depth of the
ankle, Eq. 6 can be expressed as

(
0 −1 qneck

y 0 −1 ∆qy

1 0 −qneck
x 1 0 −∆qx

)


fnx

fny

nz

nzox

nzoy

z/h

 = 0,

(7)
where f is the focal length and o the principal point of the
camera intrinsics K. By using at least three 2D neck qneck
and ankle qankle detections, we form the constraint matrix

D =


0 −1 qneck

y1 ∆qy1 0 0
1 0 −qneck

x1 −∆qx1 0 0
0 −1 qneck

y2 0 ∆qy2 0
1 0 −qneck

x2 0 −∆qx2 0
0 −1 qneck

y3 0 0 ∆qy3

1 0 −qneck
x3 0 0 −∆qx3


(8)

that gives the system of equations

D


fnx + nzox

fny + nzoy

nz

z1/h
z2/h
z3/h

 = 0. (9)

We solve Eq. 9 using SVD. Having more than three an-
kles and necks results in an over-determined system, for
which we can find a least-squares solution.

Ground normal extraction. Since Eq. 9 is a 6×6 system
with rank five, any solution we find is unique up to a scalar.
In order to determine n from the SVD or least-squares solu-
tion, we use the fact that the normal vector is perpendicular
to any vector formed by a pair of ankles. Using

n̄x

n̄y

n̄z

z̄1
z̄2
z̄3

 = λ


nx + nzox/f
ny + nzoy/f

nz/f
z1/(hf)
z2/(hf)
z3/(hf)

 , (10)

If we do not have a given focal length, we can derive the
equation for the focal length,

f =

√
(−(n̄x − n̄zox)q̄x − (n̄y − n̄zoy)q̄y)

(n̄z(z̄1 − z̄2))
, (11)

with

q̄x = ((qankle
x1 − ox)z̄1 − (qankle

x2 − ox)z̄2)p (12)

and

q̄y = ((qankle
y1 − oy)z̄1 − (qankle

y2 − oy)z̄2). (13)

Either the estimated focal lengths or a given focal length
enables us to recover λn and λ(z1, z2, z3). To remove λ,
we divide both vectors by the L2 norm of λn, giving us a
unique n of length one and ankle depths z1, z2, and z3.

Using the normal vector n and the known depths z1,
z2, and z3, we recover the orientation and position of the
ground plane and subsequently estimate the mirror plane
from a 3D ankle position of a person and its mirror image,
as explained in the main document.
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